“垃圾分类难”困扰大众,AI 智能垃圾桶在哪里?

今天你的城市开始“垃圾分类”了吗?

 

上海先行示范,北京、天津、重庆、成都、西安、武汉等46个重点城市也将有望在2020年底前,基本建成垃圾分类处理系统。

 

垃圾分类本质上是件对社会和环境利好的事情,可是,严苛的分类标准和条例却让大家叫苦不迭,由于人为处理较为复杂、意识和习惯未形成,“垃圾分类难”深深困扰着大众。

 

有人指出,人工智能这几年发展迅速,能不能通过AI手段和技术来解决垃圾分类难题呢?

 

甚至,是否有望出现一款分类准确、价格便宜、适合个人使用的智能垃圾桶?

 

“垃圾分类”中的真实需求是什么?

 

“猪骨头是干垃圾,鸡骨头却是湿垃圾;小龙虾壳是湿垃圾,螃蟹壳却是干垃圾”“996上班族不配扔垃圾”“确认过眼神,都是偷偷丢垃圾的人”…… 随着上海生活垃圾管理条例的正式施行,以及严格的惩罚措施,网友直呼“史上最严垃圾分类措施”来了。

 

 


            “垃圾分类难”困扰大众,AI 智能垃圾桶在哪里?

 

其实,这些调侃背后,代表了大众真实的垃圾分类“痛点”。

 

在上海的小语(化名)表示,最头疼的是分不清干垃圾和湿垃圾、但是查询又很麻烦。她以前有时会闭眼扔干垃圾,但是条例实施后,会有人现场监督检查,扔错要罚款。

 

“湿垃圾需要破袋,尤其是真空小包装的鸭脖之类,有的时候需要把骨头从每一个袋子里拿出来,还挺麻烦。”

 

小语表示,其实很多的麻烦存在于路上,比如赶时间,上班路上吃个包子或者鸭脖,可能一条路都找不到一个湿垃圾筒。

 


            “垃圾分类难”困扰大众,AI 智能垃圾桶在哪里?

此外,扔垃圾也会限定时间,同样在上海的工作的林琳(化名)常常抱怨扔垃圾的时间太短了,完美错过上下班时间,大夏天就比较闹心,尤其厨余垃圾很容易发酵。她也很少使用软件具体去查询分类,“很多时候是凭感觉分的”。

 

在林琳看来,目前国内的现状是湿垃圾很多。我国生活垃圾最主要的构成部分是厨余垃圾,超过60%,有的地区甚至达到70%至80%,对比欧美国家,他们的厨余垃圾占到25%左右。含水率很高、容易腐烂降解的湿垃圾在一定程度上带来了很多现实困难。

 


            “垃圾分类难”困扰大众,AI 智能垃圾桶在哪里?

随着垃圾分类成为今夏最热话题,国内互联网、科技公司纷纷推出了小程序、App等查询应用,包括百度、搜狗、科大讯飞等公司均推出了相关的智能查询功能。支付宝、微信上也有不少相关小程序和小游戏。这些应用的特点大同小异,主要以查询为主,支持语音、图像查询。

 

涌现的App或者小程序真的有帮助吗?确实有很多用户在必要的时候会使用。但是也有一些像小语一样,认为搜索查询很麻烦的用户。“我觉得扔垃圾的成本变高了,可能有的人受教育程度不高,或者是年纪大了,学习本身成本也很大。”她说到。

 

此外,由于数据库不够丰富和庞大,很多用户使用之后也会吐槽,“普通的不用问,想问的它不懂”。后期,用户养成一定分类习惯后,除非遇到罕见垃圾,在关键时刻可能会起到作用,否则使用频率可能不会很高。

 

“想要一款扔进去、自己分的垃圾桶”

相比较查询垃圾类别,记者调查发现,一些上海的居民更希望能有一款能帮自己自动分类垃圾的智能产品,而不只是简单的查询系统。

 

有网友也坦言,识别垃圾种类并不难,难的是代替人类分类垃圾的过程。

 

小语告诉记者,自己最希望能有一个智能垃圾桶,能让扔垃圾更方便,“也就是说,在扔垃圾的时候,可以一下子搞明白是什么垃圾,然后有垃圾桶可以扔”。她对智能垃圾桶的期待是:分类准确、价格便宜、清洁方便、没有异味。

 

那么,目前AI技术的成熟度,是否支持这样的产品实现落地?

 

 


            “垃圾分类难”困扰大众,AI 智能垃圾桶在哪里?

在接采访时,人工智能技术与服务提供商第四范式的技术人员表示,垃圾分类中所涉及的计算机视觉技术包括了图像分类、图像定位、图像检测等环节。

 

例如在垃圾分类的场景中,首先需要将带有不同垃圾种类的图片进行标注,标注是为了告诉计算机图像中出现的是可回收、厨余、不可回收等不同类型的垃圾,以及垃圾在图像中的位置等信息,作为训练模型的原始数据。

 

模型训练好后,可以将新的图片输入给模型,模型会识别、定位出是哪种类型的垃圾以及所在的位置,从而实现垃圾分类的需求。

 

“目前计算机视觉技术已经相当成熟,第四范式在计算机视觉领域已经有了深厚的积累。能否投入使用的关键在于模型识别的精准度,而影响模型精准度的关键在于原始数据量的质量的大小。原始数据质量越高,数量越大,训练出识别准确率高的模型几率越大。”

 

上述技术人员表示,数据库中包含是经过标注过的数据,标注的质量越高,AI训练的效果越好。

 

但目前,最大的问题是,标注数据的过程更多的是由人工来完成,现阶段还无法由AI来实现。虽然一些研究者正在探索自动标注数据的工作,但离真正应用还存在很长的距离。

 

此外,值得思考的是,如果将来各个城市的垃圾分类标准不统一,也将会对AI提出更高的要求。

 

其实在国外,已经有相关相对简单的智能产品推出,比如一款可以认识垃圾属性并自动的垃圾桶Oscar。但是这样的产品会适合国内的垃圾分类环境吗?

标签: